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X-ray crystal structure of Saccharomyces cerevisiae Pdx1 provides insights
into the oligomeric nature of PLP synthases
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a b s t r a c t

The universal enzymatic cofactor vitamin B6 can be synthesized as pyridoxal 5-phosphate (PLP) by
the glutamine amidotransferase Pdx1. We show that Saccharomyces cerevisiae Pdx1 is hexameric by
analytical ultracentrifugation and by crystallographic 3D structure determination. Bacterial homo-
logues were previously reported to exist in hexamer:dodecamer equilibrium. A small sequence
insertion found in yeast Pdx1 elevates the dodecamer dissociation constant when introduced into
Bacillus subtilis Pdx1. Further, we demonstrate that the yeast Pdx1 C-terminus contacts an adjacent
subunit, and deletion of this segment decreases enzymatic activity 3.5-fold, suggesting a role in
catalysis.

Structured summary:
MINT-7147859: PDX1 (uniprotkb:P16451) and PDX1 (uniprotkb:P16451) bind (MI:0407) by cosedimenta-
tion in solution (MI:0028)
MINT-7147899: PDX1 (uniprotkb:P37528) and PDX1 (uniprotkb:P37528) bind (MI:0407) by cosedimenta-
tion in solution (MI:0028)
� 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

1. Introduction

The compounds pyridoxal, pyridoxin, pyridoxamin and their
phosphorylated derivatives are commonly known as vitamin B6.
Being one of the most versatile molecules in prokaryotic and
eukaryotic cells, vitamin B6 is involved in many enzymatic reac-
tions such as transamination and decarboxylation in amino acid
metabolism and biosynthesis of antibiotics [1], has a function in
the maintenance of the nervous and immune systems in higher
eukaryotes [2], and can directly act as an antioxidant [3,4].

Two exclusive pathways for de novo vitamin B6 biosynthesis ex-
ist [5]. The so-called deoxyxylose 5-phosphate (DXP) independent

pathway is predominant and found in archaea, most eubacteria
and eukarya [6]. It involves the glutamine amidotransferase [7]
PLP synthase, shown to be sufficient for production of pyridoxal
5-phosphate (PLP), a biologically active form of vitamin B6 [8,9].
A pent(ul)ose and a triose are required for PLP biosynthesis by
the enzyme Pdx1 (Scheme 1). The associated glutaminase subunit
Pdx2 hydrolyses glutamine to derive glutamate and the highly
reactive ammonia, the source for the required ring nitrogen
[7,10]. Pdx1 catalyzes a large number of enzymatic steps of differ-
ent reaction types [11].

Several independent lines of research led to the discovery of the
enzymes involved. Pdx1 was known as a stress-induced/ethylene
responsive gene from the rubber tree Hevea brasiliensis [12] and
the sponge Suberites domuncula [13]. It was independently charac-
terized as singlet oxygen resistance mediating in Cercospora nicoti-
anae [14]. Very recently, horizontal gene transfer of a Pdx1 protein
from bacteria to the nematode Heterodera glycines has been postu-
lated [15].

In Saccharomyces cerevisiae, Pdx1 was originally discovered as a
stationary phase up-regulated gene [16]. The three identified Pdx1
homologues SNZ1, SNZ2, and SNZ3 are located adjacent to the Pdx2
glutaminase homologues SNO1, SNO2 and SNO3 [17]. Genes are
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co-regulated in tandem, and the Snz1 and Sno1 proteins have been
shown to interact [17]. SNZ2 and SNZ3 are up-regulated upon thi-
amine suppression in the growth medium [18], suggesting a link
to vitamin B1 synthesis. The transcription factor Pho4, an in vivo
substrate of the Pho85 kinase, is involved in regulation of the tim-
ing of SNZ1 but not SNZ2/3 expression [19].

X-ray crystallographic studies revealed a dodecameric structure
for the Pdx1 synthase subunits from Bacillus subtilis [20] and Geo-
bacillus stearothermophilus [21]. Pdx1 has a (ba)8- or TIM-barrel
fold [22] and was reported to exist in a salt dependent hexamer–
dodecamer equilibrium in solution [20,21]. The dodecamer is
formed by two interdigitating rings, each consisting of six Pdx1
molecules. Pdx2 subunits attach to the Pdx1 oligomer, and fully
decorated complexes with an approximate molecular weight of
650 kDa contain 12 Pdx2 subunits attached to a Pdx1 dodecamer.
PLP synthase complexes have been characterized structurally from
B. subtilis [20] and from Thermotoga maritima [23].

We have investigated the S. cerevisiae Pdx1 homologue Snz1.
For consistency, we use the Pdx nomenclature, and name Snz1,
Snz2 and Snz3 as ScPdx1.1, ScPdx1.2 and ScPdx1.3, respectively,
while Sno1, Sno2 and Sno3 are referred to as ScPdx2.1, ScPdx2.2
and ScPdx2.3 throughout the text.

2. Materials and methods

2.1. Reagents

Ampicillin, isopropyl b-D-1-thiogalactopyranoside (IPTG), imid-
azole, 2-amino-2-(hydroxymethyl)-1,3-propanediol (Tris), NaCl,
and (NH4)2SO4 were from Roth (Carl Roth, Karlsruhe, Germany).
Na2HPO4, NaH2PO4 and KCl were from Merck (Merck KGA, Darms-
tadt, Germany). 1-Thioglycerol (MTG), DL-glyceraldehyde 30-phos-
phate, and ribose 50-phosphate were from Sigma (Sigma–Aldrich,
Vienna, Austria).

2.2. Molecular biology

Genomic DNA from S. cerevisiae strain BY4741 was isolated as
described [24]. ScPdx1.1 (yeastgenome.org) was amplified by stan-

dard PCR, using custom primers (VBC-Biotech Service GmbH, Vien-
na, Austria). The fragment was NdeI/EcoRI (New England Biolabs
GmbH, Frankfurt, Germany) cloned into pET21a(+) (Novagen
Merck, Nottingham, UK) to generate C-terminally tagged
ScPdx1.1His6.

Site directed mutagenesis was carried out using the Quick-
Change� XL Site Directed Mutagenesis Kit (Stratagene, La Jolla,
CA): native ScPdx1.1 – introduction of a stop-codon after Trp297;
ScPdx1.1DC268-297 – introduction of a stop-codon after Val267;
ScPdx1.1DC276–297 – introduction of a stop-codon after Met275;
BsPdx1His6@K178 – introduction of a lysine codon at position
178 into BsPdx1His6 pET21a(+) [9].

2.3. Protein expression and purification

Chemically competent Escherichia coli BL21 (DE3) cells (Strata-
gene) were transformed with respective plasmids. Cells were
grown at 37 �C in LB media containing ampicillin (100 lg/ml) at
37 �C, induced with 0.1 mM IPTG (final concentration) at an
OD600 of 0.6, harvested after an additional 3 h, washed with 0.9%
NaCl, and stored at �20 �C.

For purification of hexahistidine tagged proteins, cells were
thawed (lysis buffer 50 mM NaH2PO4, pH 8.0, containing 300 mM
NaCl, 10 mM imidazole), lysed by sonication, cleared by ultracen-
trifugation (40 000�g, 30 min, 4 �C), and applied onto a Ni-NTA
HP column (GE Healthcare, Freiburg, Germany). After a wash step
(lysis buffer containing 50 mM imidazole) and elution (lysis buffer
containing 250 mM imidazole), the protein containing fractions
were concentrated using 10 kDa molecular weight cut-off Centri-
prep� centrifugal filter devices (Millipore, Vienna, Austria) and ap-
plied onto a size exclusion column (S200 26/60, GE Healthcare),
equilibrated with 20 mM Tris–HCl, pH 8.0, containing 300 mM
KCl, 0.02% MTG.

For purification of native proteins, cells were thawed (lysis buf-
fer 50 mM KH2PO4, pH 7.0, containing 10 mM NaCl, 0.02% MTG),
lysed by sonication, cleared by ultracentrifugation (40 000�g,
30 min, 4 �C), and applied onto a DEAE-Sephacel column (GE
Healthcare). A linear gradient from 10 mM NaCl to 300 mM NaCl
in lysis buffer in 8 column volumes was used for elution. Desired
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Scheme 1. Biosynthesis of PLP from a pentasaccharide, a trisaccharide and glutamine by the glutamine amidotransferase PLP synthase. The glutaminase ScPdx2.1 (Sno1)
hydrolyses L-glutamine to glutamate and ammonia; the synthase ScPdx1.1 (Snz1) catalyzes isomerization of the pentose substrate ribose 50-phosphate (R5P) to ribulose 50-
phosphate (Ru5P) and subsequent synthesis of PLP, incorporating the trisaccharide glyceraldehyde 30-phosphate (G3P) and ammonia produced by ScPdx2.1. Pi, inorganic
phosphate.
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fractions (checked by SDS–PAGE) were combined and concentrated
before application onto a size exclusion column (S200 26/60, see
above). Fractions containing ScPdx1.1 were brought to 750 mM
ammonium salt concentration and applied to a phenyl sepharose

FF column (GE Healthcare), equilibrated with 50 mM Tris–HCl buf-
fered at pH 8.0, containing 10 mM NaCl, 1.3 mM EDTA, 0.02% MTG,
10% glycerol and 750 mM ammonium sulfate. A linear gradient
from 750 mM to 0 mM ammonium sulfate in 8 column volumes
was used for elution.

2.4. 3D structure determination

ScPdx1.1 or ScPdx1.1His6 (20 mg ml�1) were crystallised by
sitting drop vapour diffusion using 4 M Na-formate as crystallisa-
tion buffer. ScPdx1.1 crystals of a size of 50 lm � 50 lm � 50 lm
were flash frozen in liquid nitrogen using mother liquor contain-
ing 25% (v/v) PEG 400 as cryo-protectant. Data to 3.0 Å were col-
lected from a single crystal (beamline ID14-3, European
Synchroton Radiation Facility, Grenoble, France) with high redun-
dancy to improve I/sig(I). Data reduction with denzo/scalepack
(HKL Research Inc.) and truncate [25] was followed by molecular
replacement with MOLREP [26] using Pdx1 from B. subtilis as
replacement model (PDB code: 2NV1 [20]). Model correction
and refinement were performed in iterative steps with coot [27]
and Refmac5 [28], first with overall and in the final steps with
atom B-factor refinement. NCS averaging with tight main- and
side-chain restraints was used for all chains but excluded helices
aN (residues 3–16) and a1 (residues 28–35) that make crystal
contacts; two further separate NCS restraints were set up for
chains A, C and E and chains B, D and F.

The ScPdx1.1 dataset was plagued by pseudosymmetry and
crystal twinning. Although the crystal unit cell appeared cubic
and merged relatively well in P213, the 3-fold turned out to be
non-crystallographic, and the structure had thus to be refined in
P212121. However, the metric of the unit cell and placement of
molecules within the cell (compare Fig. 1b) allowed for pseudo-
merohedral twinning in two directions, as detected by Xtriage
[30] and refined with Refmac5. An account on crystal pathologies
is given in Supplementary data; crystallographic statistics are gi-
ven in Table 1. Coordinates have been deposited with the Protein

Fig. 1. 3D crystallographic structure of ScPdx1.1. (a) Cartoon representation of the
hexameric ScPdx1.1 structure in two orthogonal views. Helices and strands are
colored in red and blue, respectively. a-Helices have been labeled for the monomer
highlighted in orange and green. (b) Four ScPdx1.1 hexamers, shown here in surface
representation, pack into the unit cell (axes �154 Å, compare Table 1).

Table 1
Crystallographic analysis.

Data statistics ScPdx1.1

Space group P212121

Unit cell a, b, c (Å) 154.1 � 154.2 � 154.9
Resolution (Å)/high resolution shell (Å) 20.0–3.02/3.05–3.02
Rmerge (%)a/high resolution shell 7.5/41.6
Completeness (%)/high resolution shell 99.8/96.2
hIi/hsigIi/high resolution shell 23.4/3.4
Redundancy/high resolution shell 7.9/6.5
Mosaicity (�) 0.65
Unique reflections 72 026
Average B (Å2) 80
Solvent content (%) 74
Monomers in asymmetric unit 6

Refinement statistics
NCS groups 3 (see text)
Twin target, fraction (h k l), 0.47

(k �l �h), 0.30
(�l �h k), 0.23

Amino acids per asymmetric unit 1686
Protein atoms per asymmetric unit 12 594
Root mean square deviation bonds (Å)/angles (�) 0.011/1.28
Ramachandran plot most favoured (residues/%) 1274/86.3
Ramachandran plot additional favoured (residues/%) 201/13.6
Ramachandran plot generously allowed (residues/%) 1/0.1
Ramachandran plot disallowed (residues/%) 0/0.0
Rwork (%)/Rfree (%)b 16.3/18.1

a Rmerge ¼
P

hkl
P

ijIiðhklÞ � IðhklÞj=
P

hkl
P

i IiðhklÞ.
b 2.9% of the data were excluded using Phenix [29] to calculate Rfree, taking NCS

into account, but not the presence of twinning, which may have lowered reported
Rfree values.
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Data Bank (accession code 3FEM). All structural diagrams were
drawn using PyMOL [31].

2.5. Biophysical and kinetic analysis

For analytical ultracentrifugation, ScPdx1.1His6 was dialysed
against 20 mM Tris–HCl pH 7.5, then supplemented with 0 mM,
200 mM, 1 M Na-formate, 200 mM NaH2PO4 or 200 mM KCl.
BsPdx1His6@K178 was assayed in 20 mM Tris–HCl, pH 7.5, con-
taining 200 mM KCl. Sedimentation velocity runs using a Beckman
Optima XL-A ultracentrifuge (Beckman Coulter, Fullerton, CA) were
performed at 35 000 rpm, 20 �C, k = 280 nm, with �80 lM protein.
Programs SEDNTERP version 1.09 (University of New Hampshire),
SEDFIT [32] and HYDROPRO [33] were used for data analysis (see
legend to Table 2).

PLP synthase activity was determined as described in [9]. Puri-
fied proteins were generally dialyzed against 50 mM Tris–HCl, pH
8.0. PLP formation was monitored at a wavelength of 414 nm at
37 �C, using 40 lM protein, 1 mM ribose 50-phosphate and 2 mM
DL-glyceraldehyde 30-phosphate with 10 mM (NH4)2SO4 as nitrogen
source. The data are listed in Table 3 and were fitted using Michae-
lis–Menten kinetics [9].

3. Results and discussion

3.1. ScPdx1.1. is a hexamer in the 3D structure and in solution

The crystal structure of ScPdx1.1 has been determined by
molecular replacement. The Matthews parameter suggested that
one dodecamer could fit the asymmetric unit (VM = 2.4); however
the final 3D structure of ScPdx1.1 shows only a hexamer per asym-
metric unit (VM = 4.7, Fig. 1a). The structure of Pdx1 from B. subtilis
(BsPdx1) [20] used for molecular replacement crystallised in an
orthorhombic space group with a single hexamer per AU; crystal
symmetry then generates the BsPdx1 dodecamer. In fact, all other
Pdx1 homologues determined by X-ray crystallography to date as-
sume a dodecameric quaternary structure [20,21,23]. Surprisingly,
the crystal packing for ScPdx1.1 is such that the hexamers do not
pack into dodecamers (Fig. 1b). This leads to the observed high sol-
vent content of 74% and probably is the reason for the low diffrac-
tion limit of 3.0 Å and the high overall B value of 80 Å2 (Table 1).

ScPdx1.1 has a (ba)8-barrel fold, and a number of deviations
from the regular motif are present (Fig. 1a), like with other PLP
synthases [20,21,23]. Firstly, nearly the full N-terminus is resolved
in electron density, including a-helix aN, residues 4–17. This helix

Table 2
Analysis of ScPdx1.1, BsPdx1 and BsPdx1@K178 proteins by analytical ultracentrifugation.a

Species Tris–HCl, pH 7.5, mM Salt q, g/cm3b g, cPb Sexp, Sc Scalc, Sd Mexp, kDae Mcalc, kDaf f/fog

(ScPdx1.1His6)6 20 – 0.99880 0.01007 8.8 ± 0.1 8.2 185 ± 3 204 1.27
20 0.2 M Na-formate 1.00740h 0.01049h 8.9 ± 0.1 190 ± 4
20 1.0 M Na-formate 1.03985h 0.01212h 8.6 ± 0.1 178 ± 6
50 – 0.99966 0.01017 8.5i 175i

50 0.2 M NaPO4 1.02775 0.01141 8.5 ± 0.2 171 ± 5
20 0.2 M KCl 1.00824 0.01005 8.6 ± 0.1 188 ± 3

(BsPdx1His6)6 20 0.2 M KCl 1.00824 0.01005 8.8iu 8.5 199i 196 1.29
(BsPdx1His6@K178)6 20 0.2 M KCl 1.00824 0.01005 8.7 ± 0.1j 8.5 179 ± 1j 196 1.29
(BsPdx1His6)12 20 0.2 M KCl 1.00824 0.01005 13.5i 14.4 346i 392 1.25
(BsPdx1His6@K178)12 20 0.2 M KCl 1.00824 0.01005 12.2 ± 0.1j 14.4 299 ± 2j 392 1.25

a Experimental values are means of at least three independent experiments (unless otherwise noted).
b Buffer density q, viscosity g, partial specific volumes �v and extinction coefficients calculated using the program SEDNTERP version 1.09 (University of New Hampshire).
c Sedimentation coefficients were determined under standard conditions (20 �C, H2O) from the c(s) distribution calculated from the raw velocity sedimentation data using

SEDFIT [32].
d Calculated sedimentation coefficients using HYDROPRO and 3.1-Å bead size [33].
e Molecular mass derived from molar mass distributions c(M).
f Calculated molecular mass.
g Ratio of the friction coefficient (f) to the friction coefficient (fo) of a sphere. Translational diffusion coefficient and volume of the protein calculated with HYDROPRO [33].
h Buffer density q and viscosity g experimentally determined using a SVM 3000 Viscosimeter (Anton Paar, Ostfildern, Germany).
i Single measurement.
j Average of two measurements.

Table 3
Kinetic analysis of ScPdx1.1, ScPdx1.1DC276–297 and BsPdx1 proteins.a

Protein PLP synthase activityb Ribose 5-phosphatec Glyceraldehyde 3-phosphated

Activity (nmol mg�1 min�1) Activity (%)e Km (mM) vmax (nmol mg�1 min�1) Km (mM) vmax (nmol mg�1 min�1)

ScPdx1.1 1.2 ± 0.14 100 0.11 ± 0.05 1.45 ± 0.01 0.30 ± 0.09 1.54 ± 0.12
ScPdx1.1DC276–297 0.4 ± 0.09 33 0.15 ± 0.01 0.36 ± 0.03 0.37 ± 0.08 0.41 ± 0.04
BsPdx1 0.3 ± 0.07 25 0.068 ± 0.002f 0.63g 0.077 ± 0.002f n.d.h

a All values are means of at least three independent experiments.
b 40 lM protein, 1 mM ribose 50-phosphate, 2 mM DL-glyceraldehyde 30-phosphate, 10 mM ammonium sulfate, 50 mM Tris–HCl, pH 8.0, 37 �C.
c As (b), but varying the concentration of ribose 50-phosphate.
d As (b), but varying the concentration of glyceraldehyde 30-phosphate.
e Setting ScPdx1.1 activity as reference 100%.
f See Ref. [9].
g Calculated from the value kcat = 0.02 min�1 given in Ref. [9], where Vmax = kcatEt with total enzyme concentration Et = 40 lM.
h n.d., not determined.
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has been shown to be indispensable for complex formation with
the Pdx2 subunit in B. subtilis and Plasmodium falciparum
[20,34,35]. An ordered aN helix was previously only observed in
Pdx1/2 complexes [20,23], not the isolated Pdx1 subunits [20,21].

Secondly, helix a20 inserted between b1 and a2 is implied in en-
zyme activation ([20], discussed in Section 3.3). Thirdly, helix a800

inserted after helix a8 forms the hexamer interface. Finally, elon-
gation of a-helix a6 and insertion of helices a60 and a6” are re-
quired for dodecamer formation [20,21,23].

It is puzzling that the yeast homologues possess the latter inser-
tions while ‘‘loosing” the apparent propensity to oligomerise into
dodecamers. It was thus imperative to investigate by an in-solution
technique whether the high salt concentration used in crystallisa-
tion (4 M sodium formate) had interfered with dodecamer forma-
tion. Protein sedimentation behaviour was analyzed by analytical
ultracentrifugation (previously described for BsPdx1, [20]).
ScPdx1.1 in Tris-buffer at pH 7.5 with varied salt strength, 0, 0.2
and 1 M sodium formate has average sedimentation coefficients
normalised to standard conditions (20 �C, water) of 8.8 ± 0.1,
8.9 ± 0.1 and 8.6 ± 0.1 S (Fig. 2a and Table 2). The data are in keep-
ing with earlier experimental data using non-denaturing gradient
polyacrylamide gel electrophoresis that determined a molecular
weight of 230 kDa for the ScPdx1.1 complex, consistent with a hex-
amer [17]. Minor peaks are observed at approximately 3 S, possibly
indicating presence of monomeric proteins, and around 13.6–
14.8 S, suggesting ScPdx1.1 can convert into a higher molecular
species.

Buffer conditions more favourable for oligomerisation of
ScPdx1.1 into dodecamers might exist. For example, for Pdx1 from
G. stearothermophilus the hexamer:dodecamer equilibrium shifts
toward the dodecamer in the presence of 200 mM phosphate
[21], but the enzyme is almost exclusively hexameric in the ab-
sence of phosphate ions. In the presence of 200 mM phosphate ions
ScPdx1.1 is hexameric with a sedimentation coefficient of
8.5 ± 0.2 S (Fig. 2b and Table 2).

The observed differences in quaternary structure may have an
effect on catalytic activity. Interestingly, we found that ScPdx1.1
has 4-fold higher specific catalytic activity than BsPdx1, employing
a glutaminase independent enzyme assay (Table 3). This could sug-
gest that dodecamer formation is not a prerequisite to enzymatic
activity. However, transient interaction of hexamers during PLP
biosynthesis cannot be excluded. The nearly cubic unit cell can ori-
ent in three possible ways, leading to an unusual case of pseudo-
merohedral twinning, described in Section 2 and Supplementary
data.

20 mM Tris pH 7.5; 1.0 M Na-
Formiat
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20 mM Tris pH 7.5; 200 mM Na-
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Fig. 2. Oligomerization behaviour of ScPdx1.1 proteins in solution, as analyzed by
analytical ultracentrifugation under various conditions: (a) ScPdx1.1 with 0 M (solid
line), 0.2 M (dashed line) and 1 M sodium formate (dotted line). (b) ScPdx1.1 in the
absence of sodium phosphate (solid line) and in the presence of 0.2 M sodium
phosphate (dashed line). Compare Table 2.

Fig. 3. In silico modeling of a ScPdx1.1 dodecamer generated by superposition of two ScPdx1.1 hexamers onto the BsPdx1 dodecamer (PDB code 2NV1 [20]) and subsequent
energy minimization using CNS [36]. One ScPdx1.1 hexamer is shown in orange-blue, the second one in purple-blue, the position of Lys177 is highlighted in green. a-Helices
have been annotated for one ScPdx1.1 subunit. Hexamer and dodecamer interfaces are marked. The zoom on the right-hand side shows the dodecamer interface before and
after energy minimization. In the energy minimized model, clashes between helices a60 and a600 of two monomers resulting from the superposition are avoided.
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3.2. Disruption of the dodecameric structure of PLP synthase

Structural elements required for dodecamer formation are
present in ScPdx1.1, despite its hexameric nature. We super-
posed the hexameric ScPdx1.1 onto two hexameric halves of
the BsPdx1 dodecamer to understand which structural properties
hinder oligomerisation (Fig. 3). This resulted in overlapping
residues and main chain clashes, as depicted in Fig. 3 (upper in-
set). However, dodecamer formation might induce or coincide
with structural rearrangements. Manual adjustment of helices
a6, a60 and a600 to obviate clashes followed by energy
minimization using CNS [36] leads to the altered structure de-
picted in Fig. 3 (lower inset). From this exercise and from analyt-
ical ultracentrifugation we do not rule out that ScPdx1.1
hexamers may form into dodecamers, but restructuring of heli-
ces a6, a60 and a600 would have to be accounted for in terms
of energy.

From comparison of ScPdx1.1 and BsPdx1 3D-structures (Fig. 4)
differences are seen at the C-terminal end of helix a6 and helices
a60 and a600. A multiple sequence alignment shows an insertion
of a single lysine residue in this region in ScPdx1.1 (marked green
in Fig. 3) and insertion of an asparagine and a lysine in ScPdx1.2
and ScPdx1.3 (not shown). The insertion in the yeast proteins is un-
ique and not found in bacterial and plant homologues.

Simple deletion of Lys177 in ScPdx1.1 did not convert the
hexamer into dodecamer in analytical ultracentrifugation (data
not shown). Therefore the Lys177 insertion is not the sole factor
determining the quaternary organisation of PLP synthase. The
reverse experiment on a dodecameric enzyme allows quantifying
the interference of the lysine insertion with dodecamer forma-
tion. For this purpose we inserted a lysine in an equivalent
position into BsPdx1, generating BsPdx1His6@K178 that can be
heterologously expressed in E. coli with similar yields,
stability and enzymatic activity as wild-type protein (data
not shown). Size exclusion chromatography indicated
conversion of BsPdx1 dodecamers into hexameric species (data
not shown).

Analytical ultracentrifugation of BsPdx1wt and BsPdx1His6@
K178 (Fig. 5) showed that the hexamer:dodecamer ratio changes,
and the dissociation constant of dodecamer is increased from
4.2 lM for the wild-type protein to 16.9 lM for the insertion var-
iant. The hexameric species have similar S-values with 8.7 ± 0.1 S
for BsPdx1His6@K178 and 8.8 S for BsPdx1 (Table 2). In contrast,
the dodecameric species differ from each other and show S-values
of 13.5 S for BsPdx1 and of 12.2 ± 0.1 S for BsPdx1His6@K178. In
sedimentation velocity runs, a shift towards a lower sedimenta-
tion coefficient can result from a destabilization and partial disso-
ciation of the higher molecular weight oligomer, or from a change
in shape leading to an increased friction coefficient. While hexa-
meric and dodecameric species are well separated, we conclude
that insertion of the single lysine leads to a conformational
change that is not fully compatible with the dodecamer, conse-
quently changing the quaternary structure of BsPdx1. Thus, we
predict that presence of the insertion largely determines the qua-
ternary structure of PLP synthases; sequence comparison suggests
that a number of fungal proteins sharing insertions (e.g. Ashbya,
Apergillus, Candida, Debaryomyces, Kluyveromyces, Lodderomyces,
Pichia, and Vanderwaltozyma sp.) all are (mainly) hexameric in
nature.

3.3. Involvement of the C-terminus in catalysis

A large part of the C-terminus up to residue 283 is ordered in
the structure of ScPdx1.1. The structure resolves an additional 15
residues compared with BsPdx1, and four further amino acids
when compared with the T. maritima Pdx1/Pdx2 structure [23].

The C-terminus is positioned in the interface between two
ScPdx1.1 monomers of a hexameric ring in contact distance to
the loop between a20 and a2 of an adjacent monomer, i.e. in close
proximity to the catalytic centre. This segment is mostly extended,
leading into an unpredicted 3–10 a-helix, named here aC. Like a20,
aC points into the centre of the ScPdx1.1 hexamer, as is a20

(Fig. 1a). The helical segment a20 itself is observed in the ScPdx1.1

Fig. 4. Superposition of the 3D-structures of one ScPdx1.1 monomer, orange and
blue, with one BsPdx1 monomer (PDB code 2NV1, [20]), green and blue. a-Helices
have been annotated; the zoom shows differences in the region of helices a6, a60

and a60 0 .
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structure but was previously only resolved when Pdx1 was in com-
plex with Pdx2 [20,23]. Thus, formation of a20 on the C-terminal
face of the (ba)8-barrel was described as a priming of the synthase
for catalysis [20]. Observation of this helix possibly explains why
ScPdx1.1 has higher PLP synthase activity than BsPdx1, determined
in the absence of glutaminase (with ammonium ions as nitrogen
donor, Table 3). These observations suggest that stabilisation of
the C-terminus and closing off the active site by helix a20 and
the C-terminus is necessary for catalysis.

We constructed two C-terminal deletion mutants to under-
stand the involvement of the C-terminal segment in catalysis.
While the shorter of the two deletion variants, ScPdx1.1DC268–

297, was exclusively found in inclusion bodies after heterologous
expression in E. coli BL21 (DE3), ScPdx1.1DC276–297 could be puri-
fied in soluble form. No change with respect to oligomerisation
properties has been detected during purification using size exclu-
sion chromatography (not shown). However, PLP synthase activ-
ity of ScPdx1.1DC276–297 is 3-fold lower compared to wild-type
ScPdx1.1, and comparable to BsPdx1 using the same glutaminase
independent assay (Table 3). Variation of substrate concentration
to determine Michaelis–Menten kinetic parameters shows that
ScPdx1.1 and ScPdx1.1DC276–297 have similar Km values, but Vmax

drops 3.5-fold in the truncation variant. This indicates that the C-
terminus of ScPdx1.1 influences enzyme activity, but is not di-
rectly involved in substrate binding. Since the C-terminus of
one monomer is interacting with a second monomer in the hex-
amer, hexamer formation has a role in catalysis in ScPdx1.1 and
possibly in Pdx1 synthases in general. It will be interesting to
investigate whether ScPdx1 dodecamer formation represents an-
other regulatory layer to PLP synthase activity, possibly primed
by interaction with ScPdx2, and we have now initiated a complete
characterization of PLP production by ScPdx1.1 in complex with
ScPdx2.1.

Note added in proof

While this manuscript was under review, another report on the
involvement of the C-terminus in catalysis was published (J. Biol.
Chem. 284 (2009) 7706–7718).
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Description of Crystal Pathologies 

Data to 3.02 Å were collected at a wavelength of 0.931 Å at beamline ID14-3 at the 

European Synchrotron Radiation Facility (ESRF, Grenoble, France). Autoindexing using 

denzo (HKL Research Inc.) indicated possible cubic symmetry (Table S1). 

 Volume of the primitive cell  3631656. 
 
 Lattice          Metric tensor    Best cell (symmetrized) 
               distortion index    Best cell (without symmetry restrains) 
 
 primitive cubic          0.10% 153.61 153.78 153.74  89.87  89.81  89.99 
                                153.71 153.71 153.71  90.00  90.00  90.00 
 
 I centred cubic         20.32% 217.37 216.97 217.21 119.92 119.88  60.16 
                                217.18 217.18 217.18  90.00  90.00  90.00 
 
 F centred cubic         20.32% 266.32 265.76 266.13 109.35 109.45 109.47 
                                266.07 266.07 266.07  90.00  90.00  90.00 
 
 primitive rhombohedral   0.06% 153.78 153.74 153.61  89.81  89.99  89.87 
                                153.71 153.71 153.71  89.89  89.89  89.89 
                                217.28 217.28 266.73  90.00  90.00 120.00 
 
 primitive hexagonal     13.53% 153.74 153.61 153.78  90.01  89.87  90.19 
                                153.68 153.68 153.78  90.00  90.00 120.00 
 
 primitive tetragonal     0.09% 153.74 153.78 153.61  89.99  90.19  90.13 
                                153.76 153.76 153.61  90.00  90.00  90.00 
 
 I centred tetragonal    16.54% 265.76 217.35 153.74  90.04 125.12  89.92 
                                241.55 241.55 153.74  90.00  90.00  90.00 
 
 primitive orthorhombic   0.09% 153.61 153.74 153.78  89.87  90.01  90.19 
                                153.61 153.74 153.78  90.00  90.00  90.00 
 
 C centred orthorhombic   0.06% 216.97 217.69 153.78  89.91  89.92  89.95 
                                216.97 217.69 153.78  90.00  90.00  90.00 
 
 I centred orthorhombic  16.57% 153.61 153.78 375.87  65.96 113.96  90.01 
                                153.61 153.78 375.87  90.00  90.00  90.00 
 
 F centred orthorhombic  16.57% 217.35 217.37 375.87  54.89  89.93  89.94 
                                217.35 217.37 375.87  90.00  90.00  90.00 
 
 primitive monoclinic     0.05% 153.61 153.78 153.74  90.13  90.19  89.99 
                                153.61 153.78 153.74  90.00  90.19  90.00 
 
 C centred monoclinic     0.03% 217.37 217.35 153.74  89.96  90.22  89.94 
                                217.37 217.35 153.74  90.00  90.22  90.00 
 
 primitive triclinic      0.00% 153.61 153.74 153.78  89.87  89.99  89.81 
 
 
 autoindex unit cell  153.61  153.61  153.61   90.00   90.00   90.00 
 

Table S1: Autoindexing table, produced by denzo (HKL Research Inc.). 
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Data reduction with denzo/scalepack (HKL Research Inc.) indicated that only the 

orthorhombic cell merges with proper statistics (Table S2). 

 

Symmetry Cell axes in Å R1 overall (LR bin2 / HR bin3) 

P212121 a=153.646 b=153.671 c=153.620  7.5% ( 3.5% / 41.6%) 

P4, l unique a=b=153.623 c=153.676 31.4% (33.5% / 51.9%) 

P4, k unique a=b=153.660 c=153.619 28.8% (26.7% / 52.1%) 

P4, h unique a=b=153.648 c=153.656 29.4% (23.6% / 52.4%) 

R3 a=b=217.221 c=266.257 16.9% (14.1% / 45.3%) 

P213 a=b=c=153.656 17.0% (12.3% / 48.1%) 

Table S2: Data scaling using denzo/scalepack (HKL Research Inc.); 1 Given is Rlinear = Σ(ABS(I-

<I>))/Σ(I); 2 LR bin = low resolution bin 9.90Å–20Å, except for 8.03Å–20Å in P213; 3 HR bin = 

high resolution bin 3.02Å–3.05Å, except for 3.02Å–3.07 Å in P213 

Structure determination using molecular replacement with MOLREP [1] and data 

reduced in the orthorhombic P212121 cell and subsequent refinement with Refmac5 [2] were 

carried out as described in the main text. We then tested for presence of higher symmetry and 

possible twinning. The self rotation function of the P212121 data is seen in Fig. S1. We 

repeated molecular replacement in all possible space-groups (except P4, because of poor 

merging statistics), using the partially refined coordinates as starting model. 

 
Fig. S1: Self rotation function for space group P212121 at chi=120 (using MOLREP [1]). The origin 

peak has a height of 19.3 sigma, the features seen at theta=54.74 and phi=45 or phi=135 have 

respective heights of 17.6 sigma. 
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Refinement with Refmac5 [2] in P212121 gave an Rfree=0.330 and a figure of merit 

(FOM) of 0.754. Refinement statistics were much worse for space groups containing a 3-fold 

axis: in R3, an Rfree=0.415 and a FOM=0.553 resulted, while refinement in P213 gave 

Rfree=0.423 and a FOM=0.593. This suggested the 3-fold axis is non-crystallographic. Using 

the programs LSQKAB [3] and DynDom (www.cmp.uea.ac.uk/dyndom/, [4]), we found that 

the rotation axis of the particle is indeed offset from the body diagonal of the unit cell (Fig. 

S2) – a strict coincidence would be required for the P213 symmetry. Analysis of the Pdx1 six-

fold also demonstrates a deformation of the hexameric particle, with a slight offset of about 

60° ±0.5°, comparing superimposition of individual monomers onto each other around the 

particle rotation axis; this is probably owing to crystal packing.  

 
Fig. S2: Crystal packing analysis in the P212121 cell – cell axes are in blue, body diagonals in green; 

one hexameric particle is shown (compare Figure 3). The rotation axis of the particle is indicated in 

red. Drawn with pymol [5]. 
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Thus, this is a case were a non crystallographic symmetry operator (NCS) is close to, 

but does not exactly match, a crystallographic axis. This situation can be described as pseudo-

symmetry [6]. In this particular case, the symmetry then breaks down to an orthorhombic 

P212121 cell with a metric of three similar axes that is highly suspicious to pseudo-merohedral 

twinning. Analysis was carried out with Xtriage from the Phenix suite [6]. Initial checks on 

data integrity showed highly complete data to 3.09 Å (Error! Reference source not found.). 

In the resolution range from 20-5Å only four reflexes were missing, there were no detectable 

ice ring problems, the data have low anisotropy, and no outliers in either centric or accentric 

reflections were detected. 

 
Fig. S3: N(Z)-test. Theoretical and observed values are plotted for centric and accentric reflections. 

Statistics generated by Xtriage [6] 
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Fig. S4: L-test. Theoretical values are plotted in black for untwined (bold) and twinned cases, 

together with observed values in red. Statistics generated by Xtriage [6] 

Twinning analysis carried out in the resolution range from 10 Å to 3.09 Å showed that 

intensity distributions differ significantly from the theoretical expected values, as seen in the 

Wilson ratio, the N(Z) test (Fig. S3), or the L-Test (Fig. S4). No pseudo-translational 

symmetry was detected. Xtriage [6] reported five pseudo-merohedral twin laws, as listed in 

Table S3: 

 

twin law axis Rmetric(%) H-test(1) Britton α  R vs R(2) ML(3) 
k,h,-l 2-fold 0.022 0.169 / 0.149 0.166 0.347 / 0.182 0.022 / 0.027 

-h,-l,-k 2-fold 0.044 0.167 / 0.149 0.166 0.347 / 0.182 0.022 / 0.024 
l,-k,h 2-fold 0.023 0.167 / 0.149 0.166 0.348 / 0.183 0.022 / 0.024 

k,l,h 3-fold 0.044 0.354 / 0.348 0.359 0.152 / 0.033 0.346 / 0.297 
l,h,k 3-fold 0.044 0.354 / 0.348 0.345 0.152 / 0.033 0.326 / 0.293 

Table S3: Suspected twin laws of the P212121 cell on data statistics, as reported by Xtriage [6]. (1) 

First number given: Estimation of twin fraction via mean |H|; second number given: Estimation of 

twin fraction via cumulative distance of H; (2) First number given: R_abs_twin observed data; 

second number given R_sq_twin observed data; (3) First number given: estimated twin fraction; 

second number: same, but taking NCS into account. 

It would appear that the crystals are composed of randomly oriented unit cells, and that 

the three principal orientations are responsible for the apparent twin operators (h,k,l), (k,l,h) 

and (l,h,k), which might be represented in an equal ratio of about � / � / �. We then carried 

out twin refinement to investigate this case. Refinement with phenix.refine [7] gave starting R 

/ Rfree values of 38.59 % / 37.87 %, and final R / Rfree values of 26.54 % / 32.43 %. 

Refinement against a single twin domain would usually give about seven to eight percent 

lower R values. For the twin operator (k-l-h), a twin fraction α of 0.42 was determined, and 

starting R / Rfree values were 29.86 % / 29.42 %, and final R / Rfree values of 18.14 % / 23.87 

%. For the twin operator (-l-hk), a twin fraction α of 0.39 was determined, and starting R / 

Rfree values were 30.82 % / 30.34 %, and final R / Rfree values of 20.06 % / 25.60 %. Since 

refinement against two twin domains is currently not possible in phenix.refine, the automated 

refinement and twin determination in refmac5 was used, which assigned three twin domains 

with respective fractions of 0.47, 0.298 and 0.231, and gave much improved refinement 
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statistics, as seen from Table S4. Refmac refinement used a two step protocol, where seven 

cycles of conjugant gradient refinement (CG) were carried out with a matrix parameter of 0.1, 

followed by combined CG / TLS-tensor refinement (translation, libration and screw-rotation 

displacements) with five cycles of TLS refinement and seven cycles of CG refinement, this 

time using very restrained geometry with a matrix parameter of 0.02. NCS definitions as 

given in the main text apply in all these refinement scenarios. 

 

twin law (twin fraction)  R (%) RFree(%) FOM rmsBOND rmsANGL 
refinement start 22.35 23.39 0.700 0.0464 3.830 hkl 0.470 

k-l-h 0.298 
-l-h-k 0.231 refinement final 16.22 18.10 0.826 0.0107 1.284 

refinement start 36.05 36.25 0.675 0.0464 3.830 none 
refinement final 31.11 32.56 0.737 0.0121 1.350 

Table S4: Refinement in Refmac5. Starting and final values are given for R/RFree, figures of merit 

(FOM), and bond and angle deviations. 
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